Better Language Models and Their Implications

We’ve trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization—all without task-specific training.

Share this article

Share on facebook
Share on twitter
Share on linkedin
Share on whatsapp
Share on email

Our model, called GPT-2 (a successor to GPT), was trained simply to predict the next word in 40GB of Internet text. Due to our concerns about malicious applications of the technology, we are not releasing the trained model. As an experiment in responsible disclosure, we are instead releasing a much smaller model for researchers to experiment with, as well as a technical paper.

GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1]We created a new dataset which emphasizes diversity of content, by scraping content from the Internet. In order to preserve document quality, we used only pages which have been curated/filtered by humans—specifically, we used outbound links from Reddit which received at least 3 karma. This can be thought of as a heuristic indicator for whether other users found the link interesting (whether educational or funny), leading to higher data quality than other similar datasets, such as CommonCrawl. of 8 million web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than 10X the amount of data.

GPT-2 displays a broad set of capabilities, including the ability to generate conditional synthetic text samples of unprecedented quality, where we prime the model with an input and have it generate a lengthy continuation. In addition, GPT-2 outperforms other language models trained on specific domains (like Wikipedia, news, or books) without needing to use these domain-specific training datasets. On language tasks like question answering, reading comprehension, summarization, and translation, GPT-2 begins to learn these tasks from the raw text, using no task-specific training data. While scores on these downstream tasks are far from state-of-the-art, they suggest that the tasks can benefit from unsupervised techniques, given sufficient (unlabeled) data and compute.

Samples

GPT-2 generates synthetic text samples in response to the model being primed with an arbitrary input. The model is chameleon-like—it adapts to the style and content of the conditioning text. This allows the user to generate realistic and coherent continuations about a topic of their choosing, as seen by the following select samples[2]Note that while we have hand-chosen these samples, and are thus engaging in some meta-cherry-picking, we believe they are not too unrepresentative of the sampling process. We are simply using top-k truncated sampling, and have yet to explore more advanced methods of sampling (such as beam-search methods)..